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a b s t r a c t

The response of two general spring-coupled elements is investigated to develop a

unifying approach to the weak coupling criterion in Statistical Energy Analysis (SEA).

First, the coupled deterministic equations of motion are expressed in the bases given by

the uncoupled elements’ eigenmodes. Then, an iterative solution is expressed as a

approximation, converging if the ‘coupling eigenvalue’ is less than unity, in which case

coupling is said to be weak. This definition is related to whether response is ‘local’ or

‘global’, encompassing a number of previously defined coupling strength definitions,

applying for deterministically described structures. A stochastic ensemble is defined by

that its members are equal to the investigated structure but the elements have random

frequencies. It is required that the coupling eigenvalue be less than unity for all

members of the ensemble. This requirement generates the title subject of the article:

‘the modal interaction strength’. It is similar to the previously defined coupling strength

criterion characterising the ensemble average energy flow in uni-dimensional

waveguides. Finally, SEA models are formulated in terms of the uncoupled elements’

modal data.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Statistical Energy Analysis (SEA) is a quickly applied approximate method for prediction of stationary high frequency
random vibrations in built-up structures [1–3]. It is believed that SEA works if there are many resonances in each element
and these are ‘‘weakly coupled’’. However, there is no universally agreed coupling strength criterion assessing the
assumption of weak coupling. Therefore, much effort has been put into investigation of the SEA hypothesis that energy
flow between two directly coupled elements is proportional to the difference in their modal energies. In what follows,
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different measures of coupling strength presented in Refs. [4–12] are discussed. It is demonstrated that a unifying
approach is possible.

SEA considers the average response of an ensemble of similar structures. Thus in the name SEA: ‘‘Statistical emphasises
that the systems being studied are presumed to be drawn from populations of similar design construction having known
distributions of their dynamical parameters’’ [1]. This ensemble point of view is implicit in the present work. Explicit
response statistics, however, are not calculated; being the subject of forthcoming publications. Instead, deterministic
calculations establish criteria validating the SEA power balance formulation. It is then required that these criteria be
fulfilled for all members of the ensemble (naively) defined by that its members are equal to the investigated structure but
the elements have stochastic resonance frequencies. Upon this basis, the coupling strength criterion is evaluated.

There are two approaches to predictive SEA: the modal and the wave approach. The latter relates SEA to numerous
asymptotic results in acoustics and high frequency vibration analysis, i.e., results for large elements and for high
frequencies. Most of the existing routines for generating SEA energy flow coefficients and for SEA element formulations are
based on the wave approach, e.g., Refs. [1,3]. The modal approach is the original one [13,14] and is the approach chosen in
the present work.

When applying it, the investigated structure divides into ‘elements’ and energy conservation equations are formulated
with their vibration energies as variables based upon two assumptions. (I) In each element, the response is determined by
its ‘resonances’, so vibrations are described by the subset of the element’s eigenmodes having resonance frequencies
within the considered frequency band. (II) The energy flow between two connected elements is proportional to the
difference of their average modal energy. This is the hypothesis of Coupling Power Proportionality. In the present work, the
constant of proportionality is termed ‘‘modal energy conductivity’’ or simply conductivity.

The first assumption, of local resonant vibration, helps define an ‘element’. In many cases, it enables response
calculations so that, e.g., velocity, sound pressure or stress levels can be determined from SEA results. The first assumption
is related to the (perhaps not rigorously defined) concept of ‘local’ and ‘global’ modes. Local modes are those proper to an
isolated element. In coupled structures, only global modes exist; being solutions to an eigenvalue problem for the entire
structure. However, modes may be localised, meaning that all or most vibration energy in a mode may be found within an
element. Since it is localised, not much energy is exchanged at the boundary. Hence, it is in principle possible to find
conservative boundary conditions for an element such that the local modes’ resonance frequencies and their mode shapes
are not much different from those of the global modes. In such a situation, the assumption is approximately fulfilled and
one is entitled to say, the structure’s response is given by its local modes.

The second assumption, of coupling power proportionality, is based on the result derived by Scharton and Lyon who
show it to be exactly true for the frequency-averaged energy flow between two conservatively coupled oscillators [14].
This result is extended, on a mode-to-mode basis, to the coupling between sets of oscillators (modes in connected
structures), see Ref. [1, Section 3.2]. The second assumption is fundamental to the formulation of SEA equations, being also
the basis for the evaluation of their parameters. Moreover, coupling power proportionality simplifies these evaluations,
since it implies that the energy flow between two directly coupled elements could be considered, while neglecting the rest
of the structure.

Woodhouse demonstrates that for three coupled oscillators, unless they are ‘weakly coupled’, the hypothesis of
coupling power proportionality is not valid [15]. Similarly, modal response cannot conceivably be local unless coupling is
weak. Consequently, the assumptions of local resonant modes and coupling power proportionality are valid only if the
elements are ‘weakly coupled’.

Despite the significance of the weak coupling assumption, there is no universally agreed measure for coupling strength
proving the assumption. However, different observations can be found in the literature. Some of these are:
(1)
 Measures of dynamic coupling strength: For e.g., the stiffness or mass impedance of a connecting structure in relation to
characteristic impedances in the connected elements, e.g., Refs. [4,15]; the number of straps connecting two plates
[12]; etc. Dynamic coupling strength is proportional, or at least related, to SEA conductivity but its relation to the weak
coupling assumption is not always evident.
(2)
 Vibrational behaviour: Coupling is weak if: (a) the modal behaviour of the uncoupled substructure is not greatly
affected when the subsystems are coupled [6]; (b) the Green’s function of a directly excited substructure is
approximately equal to that of the uncoupled substructure [7]; (c) the non dimensional rise time Cs of an indirectly
impulse excited element is not much less than unity [12]; (d) the maximum coupling eigenvalue is less than unity [11].
Here, the uncoupled response provides the start approximation for an iterative solution of the coupled equations of
motion. The coupling appears as a succession of exchanges between the elements. This process converges when
exchanges are decreasing with increasing order in which case coupling is said to be weak [11].
(3)
 The Smith criterion: Coupling is weak if the ratio of coupling loss factor to dissipation loss factor is small for both
connected elements [5]. This coupling strength measure characterises the solutions to SEA equations [5]. Whether it is
also useful for assessing the validity of these equations is debatable [9,10]. (3b) Coupling is weak if the ratio of modal
energies in an indirectly and a directly excited substructure is less than or of the order of en where e is a small number
and n is the number of connections separating the elements [16,17]. This order of ‘smallness’, however, does not
guarantee that indirect couplings are negligible [10,16].
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(4)
 The Gamma criterion: Coupling is weak if gamma is smaller than unity, where the non-dimensional parameter gamma
(but for a constant factor) is the SEA conductivity divided by the product of the modal overlaps in two connected
elements [8–10]. (The modal overlap is the ratio of resonance 3-dB bandwidth to the average separation between
resonances.) Studies of uni-axial waveguides have shown that if coupling is weak in this manner, travelling wave
estimates of SEA conductivities are accurate for predicting ensemble averages of energies. Finnveden shows that only
for small ‘gamma’ coupling power proportionality holds in a three-element structure [10]. Mace demonstrates that for
small ‘gamma’, ensemble averaged coupling power is determined by those members of the ensemble having equal
uncoupled frequencies, while for strong coupling, many of the members of the ensemble contribute to the average
energy exchange at the ‘global’ resonances of the system [9,18]. Thus, gamma signifies from an ensemble point of view
whether response in one-dimensional systems is local or global.
1.2. Article content

The analyses in Refs. [8–10,18] are based on the wave approach to SEA. In the following, SEA coupling strength is
studied using the modal approach. Section 2 starts with a review of the standard SEA of spring-coupled structures, which
ends by a fundamental and original result: the ‘‘standard SEA’’ formulation for two spring-coupled oscillators. In Section 2,
the derivation is formulated as a mere consequence of standard SEA procedures, while it is demonstrated later in Section 4.

Section 3 considers the energy balance for deterministic spring-coupled structures based on Langley’s general
derivation of the SEA equations [7]. As in Refs. [4,16], the formulation is simplified by employing a series expansion; the
original contribution being a quantitative criterion for convergence that is expressed in the system parameters. This
criterion was in another context derived by Bessac, Gagliardini and Guyader [11], and the measure used is the coupling
eigenvalue. Upon this basis, it is deduced that the qualitative weak coupling criteria 2a and 2b can be quantified by the
criterion 2d.

Section 4 considers ensembles of spring-coupled structures. The ensemble members are identical to the nominal
structure except for having random natural frequencies. First two coupled oscillators are considered. The coupling power
and the input power are formulated on a non-dimensional form consisting of three parameters only: the first two describes
the difference between an uncoupled oscillator’s natural frequency and the frequency of excitation, while the third
parameter describes the coupling; it is termed the modal interaction strength. The new non-dimensional form allows an
original discussion of the energy flow characteristics in ensembles of two-oscillator structures. It turns out the modal
interaction strength is the largest coupling eigenvalue for any member of the ensemble and any frequency.

Sets of coupled modes, having random, uniformly probable, natural frequencies, are then analysed and resonant
response within a frequency band is considered. In this case, the modal interaction strength is of the order of the largest
coupling eigenvalue for any member of the ensemble and any frequency. Upon this basis, the standard SEA formulation for
spring coupled structures is validated. The standard modal approach in SEA is based upon the assumption that the energy
flow between sets of modes is given on a mode-to-mode basis [1, Fig. 3.4]. It is demonstrated originally here that this
assumption is valid if the modal interaction is small.

In short: for spring coupled structures, it is originally demonstrated that, the article’s title subject, the modal interaction
strength is an ensemble property; can be expressed in standard SEA parameters; validates the weak coupling criteria 2a,
2b, 2d and 3 for all members of the ensemble; and is similar to the criterion 4, which was derived for one dimensional
systems that support one kind of wave motion. For small modal interaction strengths, the standard SEA approach is valid
and, most spectacularly, so is also the ‘‘standard SEA’’ formulation for two spring-coupled oscillators, which is presented in
Section 2 and demonstrated in Section 4.

2. Statistical energy analysis of spring coupled structures

As background for the analysis of coupling strength, which follows in Sections 3 and 4, the SEA of two spring-coupled
elements is reviewed.

2.1. Standard SEA of two spring coupled elements

In SEA, the variables of interest are the modal energies times analysis bandwidth, also referred to as modal power
potentials [1]

EmUi ¼ Ei=ni, ni ¼Ni=O, (2.1)

where Ei is the total vibration energy in element i within the frequency band O, Ni is the number of resonances within the
frequency band and ni is the modal density. The coupling power hypothesis states that energy flow between two elements
is proportional to the difference in their modal energy:

P1,2
coup ¼ CðEmU1�EmU2Þ, (2.2)
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where the coefficient C is defined by this equation and P1,2
coup is the coupling power. It is proposed that the non-dimensional

parameter C be termed the ‘modal energy conductivity’, or, in any given context, simply the ‘conductivity’.
The governing equation in SEA of energy conservation is

M1þC �C

�C M2þC

" #
EmU1

EmU2

" #
¼

PinU1

PinU2

" #
, (2.3)

where Pin is the input power and M is the modal overlap based on the 3-dB bandwidth, which is given by

M¼ Zon, (2.4)

where Z is the loss factor. It is assumed in the formulation of Eq. (2.3) that the power dissipated in an element is given by

Pi
diss ¼ ZioEi ¼MiEmUi: (2.5)

2.1.1. Input power

The frequency averaged input power from a white force excitation of bandwidth O and amplitude f to a weakly damped
single-degree-of-freedom oscillator (one mode in a substructure) is approximately given by (see Appendix A and B).

Pin ¼
1

O

Z
O
9f 92

ReðYÞdo�
9f 92 p

2mO
, o1 2 O,

0, o1=2O,

8<
: (2.6)

where

o1 ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

q
, Y ¼�io=ðk�ioc�o2mÞ, (2.7)

where a time dependence e� i o t is implicitly assumed and where f is the rms complex amplitude of the force, Y is the input
mobility, k is the spring stiffness, c is the viscous damping coefficient and m is the mass of the oscillator. Eq. (2.6) is
asymptotically exact in the limit of zero damping. It is very accurate for small damping in which case it is also valid for
mass- or stiffness-proportional damping, i.e., when the input mobility is Y ¼�io=ðkð1�iZeÞ�ioc�o2mð1þ iZmÞÞ, where Ze

and Zm are loss factors.
Neglecting the influence of connected elements, the one-oscillator result is generalised to apply for an element,

described by its local modes. Thus, the input power is given by

Pin ¼/f 2SYc , (2.8)

Yc ¼
p
2

N

mO
, (2.9)

where /f 2S is the mean square force on the element and m is the mass. Yc is for large elements asymptotically equal to the
characteristic mobility, the mobility for an infinite element. Eq. (2.8) is derived for rain-on-the-roof excitation or as the
expected value of the input power for a point force at a random location within the element. (Derivations are found, e.g., in
Ref. [20, Section IV.4] and in Ref. [21].)

Eq. (2.9) applies for frequency band averages. Skudrzyk [22] reveals that for reverberant vibrations at higher frequencies
(above the first few resonances) the space averaged point mobility for a particular frequency is limited by its value at
resonance

YrYc=ðpM=2Þ: (2.10)

If the modal overlap is greater than unity, this expression is not valid, whereas in this case the average mobility is to a good
approximation equal to the characteristic mobility. It should be noted, the limit in Eq. (2.10) is not exact but depends on
the position in the element, however, for uniform elements (beams, plates, air-volumes, etc.) it is accurate on average.

2.1.2. SEA conductivity

For two elements, coupled at a point via a spring, the conductivity is according to Manning [21, Eq. (23a)]

C ¼
2

p
/ReðY1ÞS/ReðY2ÞS

9/Y1Sþ/�io=kcþY2S92
¼

2

p
Yc1Yc2

9/Y1Sþ/�io=kcþY2S92
, (2.11)

where kc is the coupling spring stiffness, Yi is the point mobility in element i at the spring connection and / S denotes that
appropriate averaging (frequency, space, ensemble, etc.) should be performed. It can be argued whether in Eq. (2.11) it is
correct to average each term individually.

Exact ensemble averages of vibration energies in two rods, end-coupled via a spring of stiffness kc, are calculated in
Refs. [8–10]. These ensemble averages are described by the SEA Eq. (2.3) where in this case the conductivity is given by [10]

C ¼
C1

Q�C1=M1�C1=M2
; (2.12)
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Q ¼ 1þ
2pC1

tanhðpM1ÞtanhðpM2Þ
þ

pC1
tanhðpM1Þ

� �2

þ
pC1

tanhðpM2Þ

� �2

�ðpC1Þ
2

" #1=2

(2.13)

where the ‘travelling wave’ estimate of the conductivity, for arbitrary dynamic coupling strength, is given by

C1 ¼
2

p
Yc1Yc2

Y2
c1þY2

c2þðo=kcÞ
2
: (2.14)

In Refs. [8–10] it is found that if the factor g is small,

g¼ 2C1=ðpM1M2Þ, (2.15)

that is if

go1, (2.16)

then the conductivity C of Eq. (2.12) is to a fair approximation equal to the travelling wave estimate (2.14). If g is larger
than unity, the conductivity decreases and, if the modal overlaps M1 and M2 are of the same order of magnitude, this
decrease is directly proportional to the square root of their product. (This conclusion has been confirmed for plate
structures by Yap and Woodhouse [23] and Mace and Rosenberg [24].)

If g is smaller than unity and if the dynamic coupling strength is weak, i.e., if the mobility of the spring is much higher
than the characteristic mobilities of the connected elements, the conductivity in Eq. (2.12) simplifies to

C ¼
2k2

c

po2
Yc1Yc2: (2.17)

The same result is found from Eq. (2.11), if it is assumed that the dynamic coupling strength is weak in the sense that the
mobility of the spring is much higher than the mobilities of the connected elements, even at resonance. From Eq. (2.10), for
reverberant elements this requirement is fulfilled provided that

kc=o44Yc1=ðpM1=2Þ and kc=o44Yc2=ðpM2=2Þ: (2.18)

2.1.3. Many randomly positioned springs

For general spring coupling there is no simple expression for the conductivity since it depends on the precise spring
positions and of the elements’ mode shapes. Simplifications are provided, however, if the springs are randomly positioned
or equally if the vibration fields in the elements are random and the springs are separated by distances that are of the order
of the wavelength or longer. In either of these cases, the coupling powers through the springs are uncorrelated and the
total conductivity is given by the sum of the conductivities for the individual springs. Thus, for weak coupling, in analogy
with Eq. (2.17), the conductivity is given by

C ¼
X

p

2k2
cUp

po2
Yc1Yc2, (2.19)

where kc � p is the strength of spring p.

2.2. Weakly coupled oscillators

The SEA formulation above is derived using a mobility approach [21] and a wave approach [9,10]. The expressions are
equally expressed for sets of spring-coupled oscillators (modes in connected substructures). Thus, if the sets are ‘weakly
coupled’, the SEA equations are as in Eq. (2.3) with

Pin ¼/f 2SYci; Yci ¼
p
2

Ni

miO
; Mi ¼ Zio

Ni

O
; (2.20)

C ¼
2

p
k2

c

o2
Yc1Yc2 ¼

p
2

w2

o2

N1N2

O2
, (2.21)

where

w2 ¼ k2
c =m1m2: (2.22)

From this it follows that for coupled oscillators g, Eq. (2.15), is given by

g¼ 2C1
pM1M2

¼
w2

Z1Z2o4
: (2.23)

In the following sections the interaction of spring coupled structures are investigated to gain understanding about when
Eqs. (2.3), (2.8) and (2.17) are valid. It is demonstrated that g is the parameter characterising modal interaction and
coupling power from an ensemble point of view. It is proposed that g be termed ‘modal interaction strength’.
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2.2.1. Two weakly coupled oscillators

The equations above are applied for two weakly spring-coupled oscillators having their resonance frequencies within
the frequency band O. In this case N1=N2=1. The expression in Eq. (2.23) for the coupling strength measure g is
independent of the mode count and hence it applies to the two-oscillator problem. Notably, g is independent of bandwidth,
that is, of the probability that there is resonant coupling.

From this it is concluded that if: (A) two oscillators are weakly coupled according to the criterion g51, (B) the dynamic
coupling strength is weak, and (C) their uncoupled resonance frequencies are uniformly probable within the frequency
band O, then the energy balance between them is written as in Eq. (2.3), with

Mi ¼ Zio=O, C ¼
2

p
k2

c

o2
Yc1Yc2 ¼

p
2

w2

o2O2
: (2.24)

The generic problem of two statistically defined, weakly coupled, oscillators is the foundation for much of our
understanding of the modal approach to SEA. Curiously enough, to the best of the author’s knowledge, the standard SEA
formulation for this problem appeared for the first time in Ref. [19]. Albeit, Eq. (2.24) follows directly upon the discussion
in Eq. [1, Section 3.2]. Also, the formulation follows from Newland’s analysis in Ref. [4].

3. Deterministic analysis of spring coupled structures

In the previous section SEA models for structures having motion described by their uncoupled resonant modes were
formulated upon the assumption of ‘weak coupling’. In this section, deterministic models of two spring-coupled elements
are investigated to further our understanding of the implications of this assumption and the criteria for its validity. Also,
the evaluation of SEA parameters from modal data is demonstrated.

3.1. Equations of motion

The element motions are described by their uncoupled modes {cn.i}. These orthogonal modes are scaled so thatZ
Vi

cnUiðxÞcmUiðxÞdx¼ Vidnm, (3.1)

where Vi is the volume of element i. Harmonic motion of the form e� io t is assumed.
The displacement wi � b of the uncoupled element i to a harmonic point force excitation with complex amplitude fi is

given by Green’s function Gii � b

wiUbðxÞ ¼
Z

Vi

GiiUbðx9yÞfiðyÞdy; (3.2)

GiiUbðx9yÞ ¼
X

n

cnUiðxÞcnUiðyÞ=anUi, (3.3)

anUi ¼miðo2
nUi�o

2ð1þ iZiÞÞ, (3.4)

where mi is the mass, on � i is the eigenfrequency associated with the eigenfunction cn � i and Zi is the loss factor; for viscous
damping Z¼ c=o, where c is the specific viscous damping constant. 1=anUi is the modal receptance.

The elements are spring coupled and the uncoupled modes for one element are defined by the condition that the motion
of the other element is blocked (as in Ref. [14]). The additional coupling force for coupled motion is then given solely by the
other elements motion at the coupling point. Thus, if the elements are connected by one spring, the displacements are
given by

w1ðxÞ ¼w1UbðxÞþkcG11Ubðx9x1cÞw2ðx2cÞ,

w2ðxÞ ¼w2UbðxÞþkcG22Ubðx9x2cÞw1ðx1cÞ, (3.5)

where wi is the displacement in element i, kc is the strength of the spring and xic is the coupling point coordinate for
element i.

The uncoupled modes form complete bases and are used to express the solutions to the coupled equations of motion.
Thus, it is assumed

wiðxÞ ¼
X

n

wi½n�cnUiðxÞ; wiUbðxÞ ¼
X

n

wiUb½n�cnUiðxÞ, (3.6)

where the vectors wi and wiUb contain the modal amplitudes of elements i for coupled and uncoupled motion. Using the
orthogonality relation (3.1), Eq. (3.5) are conveniently expressed in matrix form as

½I�K�
w1

w2

" #
¼

w1b

w2b

" #
, K¼

0 K12

K21 0

" #
, (3.7)
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where I is an identity matrix and the sub matrices K12 and K21 of the non-dimensional coupling matrix K are given by

K12½n,m� ¼ kccnU1ðx1cÞcmU2ðx2cÞ=anU1,

K21½n,m� ¼ kccnU2ðx2cÞcmU1ðx1cÞ=anU2: (3.8)

Eq. (3.7) is the basis for the analysis of the motion of coupled sets of modes. It is here derived for spring-coupled sub
structures only but equations on the same form apply for the gyroscopic and mass coupling conditions that were
considered by Lyon and Maidanik [13] and by Scharton and Lyon [14]. Similar equations apply for fluid–structure coupling
and also for quite general coupling of structural systems, if the modal sub-structuring technique developed by Maxit and
Guyader is used [28,29].

3.1.1. Iterative solution for weak coupling

When convergence is verified, Eq. (3.7) can be solved by a series expansion of [I�K]�1. The equation then becomes [11]

w1

w2

" #
¼ ½IþKþK2

þ � � ��
w1b

w2b

" #
: (3.9)

This also can be written as

w1 ¼ ½IþK12K21þðK12K21Þ
2
þ � � ��½w1bþK12w2b�;

w2 ¼ ½IþK21K12þðK21K12Þ
2
þ � � ��½w2bþK21w1b�: (3.10)

The rate of convergence can be estimated by considering the nth iterate of w1 which is denoted w1
ðnÞ. The norm of the

difference of the computed value of w1 in the nth iteration is

9w1
ðnÞ�w1

ðn�1Þ9¼ 9ðK12K21Þ
nw1bþðK12K21Þ

nK12w2b9r9ðK12K21Þ
n99w1bþK12w2b9¼ 9l2

max9
n9w1

ð0Þ9 (3.11)

where l2
max is the largest eigenvalue of K12K21. (The maximum norm is used, see, e.g., Ref. [26, Section 5.5.2]). lmax is

denoted the ‘coupling eigenvalue’.
Eq. (3.11) demonstrates that the rate of convergence of Eq. (3.9) is determined by the coupling eigenvalue and that the

iteration converges if 9lmax9o1.
The series expansion (3.9) is similar to the one employed by Newland [4,25]. The contribution by Bessac et al. is the

criterion for convergence [11]. This criterion is determined by the coupling eigenvalue, which is calculated in Section 3.3.

3.2. Coupling via many springs

If elements are coupled by many springs, their displacements are given by

w1ðxÞ ¼w1UbðxÞþ
X

p

kcUpG11Ubðx9x1cUpÞw2ðx2cUpÞ

w2ðxÞ ¼w2UbðxÞþ
X

p

kcUpG22Ubðx9x2cUpÞw1ðx1cUpÞ (3.12)

where kc � p is the strength of spring p, connected to the two elements at x1cUp and x2cUp, respectively. Similarly, the coupling
matrix K in Eq. (3.7) is given by

K12½n,m� ¼
X

p

kcUpcnU1ðx1cUpÞcmU2ðx2cUpÞ=anU1;

K21½n,m� ¼
X

p

kcUpcnU2ðx2cUpÞcmU1ðx1cUpÞ=anU2: (3.13)

Besides the substitutions of Eq. (3.12) for Eq. (3.5) and Eq. (3.13) for Eq. (3.8), the analysis in Section 3.1 applies equally
when the elements are coupled by many springs.

3.3. Properties of the coupling matrix

3.3.1. Coupling by one spring

Work by Bessac et al. [11], is repeated here for completeness.
First, they show that if l is an eigenvalue to K then l2 is an eigenvalue of K12K21 or equally of K21K12 [11, Eqs. (10a–d)].

The elements of these matrices are given by

K12K21 n,m½ � ¼ �
k2

c

o2

�iocnU1ðx1cÞcmU1 x1cð Þ

anU1
Y2ðx2cÞ;

K21K12 n,m½ � ¼ �
k2

c

o2

�iocnU2ðx2cÞcmU2ðx2cÞ

anU2
Y1ðx1cÞ, (3.14)
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where the input mobilities at the coupling points Y1ðx1cÞ and Y2ðx2cÞ are given by

Y1ðx1cÞ ¼
X

r

�ioðcrU1ðx1cÞÞ
2

arU1
;

Y2ðx2cÞ ¼
X

r

�ioðcrU2ðx2cÞÞ
2

arU2
: (3.15)

Please note, the uncoupled system is here defined for the blocked condition, where the coupling spring is included in the
element but the other element is kept motion-less. The input mobilities Y1ðx1cÞ and Y2ðx2cÞ are calculated for this condition.

It is seen in Eq. (3.14) that the matrix K12K21, apart from a constant factor, is equal to the outer product of two vectors
with entries fcnU1ðx1cÞ=anU1g and fcmU1ðx1cÞg, respectively. Thus, the matrix has unity rank and therefore only one non-zero
eigenvalue. The trace of a matrix is equal to the sum of its eigenvalues, so, as the matrix has only one non-zero eigenvalue
l2

max, it is found that

l2
max ¼

X
n

K12K21½n,n� ¼
X

n

�
k2

c

o2

�iocnU1ðx1cÞcnU1ðx1cÞ

anU1
Y2ðx2cÞ ¼�

k2
c

o2
Y1ðx1cÞY2ðx2cÞ: (3.16)

The same result applies to K12K21, so Eq. (3.11) estimates equally the rate of convergence in both connected elements.

3.3.2. Coupling by many springs

The proof in Ref. [11] that l2 is an eigenvalue of K12K21 (and equally of K21K12) if l is an eigenvalue of K is valid also for
coupling by many springs. The entries of K12K21 are in this case given by

K12K21 n,m½ � ¼
X

r

X
p

kcUp
cnU1 x1cUp

� �
crU2 x2cUp

� �
anU1

� �X
q

kcUq
crU2 x2cUq

� �
cmU1 x1cUq

� �
arU2

� �
: (3.17)

The magnitude of the largest eigenvalue of this matrix is limited by the sum of the magnitudes of its diagonal elements:

l2
maxr

X
n

					K12K21½n,n�

					¼
X

n

					
X

r

X
p

X
q

kcUp
cnU1ðx1cUpÞcrU2ðx2cUpÞ

anU1

� �
kcUq

crU2ðx2cUqÞcnU1ðx1cUqÞ

arU2

� �					 (3.18)

Generally, this expression must be evaluated numerically.
Simplification, however, is provided for random spring positions. Thus, for random location of the spring connections in

the second element, the expected values of the entries of K12K21 are given by the terms in the summations over p and q for
which p=q, since the other terms do on average sum to zero. Thus, the expected values of the entries of K12K21 are for
random spring positions given by

K12K21 n,m½ � ¼
X

p

�
k2

cUp

o2

�iocnU1ðx1cUpÞcmU1ðx1cUpÞ

anU1
Y2ðx2cUpÞ, (3.19)

where the input mobility Y2 is defined in Eq. (3.15). Using the triangle inequality, an upper bound to the norm of K12K21 is
given by

9K12K219r
X

p

9ðK12K21Þp9, (3.20)

where the entries of the matrix (K12K21)p equals those of K12K21 for the case when only coupling spring p is present. Upon
this basis, the results in Section 3.3.1 are used to find an estimate of the maximum eigenvalue of K12K21

9l2
max9¼

X
p

k2
cUp

o2
Y1ðx1cUpÞY2ðx2cUpÞ
		 		: (3.21)

An alternative estimate is provided in Section 4.3, where the maximum coupling eigenvalue across an ensemble is
considered.

3.4. Criterion for coupling strength

Because of the form of K in Eq. (3.7), the coupling appears as a succession of exchanges between the subsystems. This
process converges when exchanges are decreasing with decreasing orders. This condition is by Bessac et al. interpreted as
weak coupling [11].

Keane and Price [6] state that coupling is weak if the modal behaviour of the uncoupled substructure is not greatly
affected when the subsystems are coupled. The modal amplitudes give one description of ‘modal behaviour’. Evidently, the
Keane and Price criterion for weak coupling (defined in this manner) is fulfilled when convergence of Eq. (3.9) is rapid,
since then the modal amplitudes are not much different from the uncoupled ones.

Langley defines weak coupling by the criterion that Green’s function of a directly excited substructure is approximately
equal to that of the uncoupled substructure [7]. Green’s function of the coupled structure is determined by the solution to
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Eq. (3.5) for point excitation. Therefore, Langley’s weak coupling criterion is fulfilled when convergence of Eq. (3.9) is rapid,
as further discussed in Section 3.5.

In conclusion, the qualitative criteria for coupling strength set up by Keane and Price [6] and Langley [7] are equivalent
to the quantitative criterion set up by Bessac et al. [11]. Coupling strength, defined in this manner, is measured by the
magnitude of the largest eigenvalue of the non-dimensional coupling matrix K. For coupling by one spring, this eigenvalue
is given by Eq. (3.16). For coupling by many springs that have random positions within large elements, it is estimated by
Eq. (3.21) and for general spring-coupled elements, it is evaluated numerically from Eq. (3.18).

3.5. Power balance

Langley derives equations, similar to the SEA equations, for linearly vibrating systems with conservatively coupled
elements having uniform density, which are randomly, rain-on-the-roof, excited [7]. This formulation is in Ref. [27]
extended to apply also for a class of non-uniform elements. The equation for power balance is (see Appendix B)

CÊ¼ P, (3.22)

where the entries to the vector P are the input powers to the elements, averaged in the considered frequency band O, and
where

C¼ ð1=pÞqM
�1

q, (3.23)

Ê¼ pr�1q�1T: (3.24)

The entries to the vector T are the frequency averaged kinetic energies in the elements. In Ref. [27] it is proposed that the
variables Ê be denoted ‘vibration potentials’. The entries of the diagonal matrix r are the densities, or effective densities,
whereas those of the symmetric matrix M and the diagonal matrix q are given by

Mij ¼
1

2O

Z
O

Z
Vi

Z
Vj

o29Gijðx,y,oÞ92
dxdydo, (3.25)

qi ¼
1

O

Z
O

Z
Vi

Reð�ioGiiðx,x,oÞÞdxdo: (3.26)

As in Ref. [27], the formulation above differs from Langley’s in being for frequency band averages. Consequently, the matrix
C is non-dimensional and the matrices q and M are frequency averages. For high frequencies and large substructures, these
may reach asymptotic values that are quite independent of analysis bandwidth.

3.5.1. Green’s function for weakly coupled elements

Green’s functions for the coupled and uncoupled system are expressed in the uncoupled modes

Gijðx9yÞ ¼
X

n

gij½n�cnUiðxÞ,

GiiUbðx9yÞ ¼
X

n

giiUb½n�cnUiðxÞ, (3.27)

where from Eq. (3.3) the entries of the vector giiUb are given by

giiUb½n� ¼cnUiðyÞ=anUi: (3.28)

Green’s function is the solution to the equations of motion for point excitation, so for weak coupling it is found from
Eq. (3.10). Neglecting terms of the order l2

max compared to unity, Green’s function for the coupled structure is thus given by
Eq. (3.27) and by

g11 ¼ g11Ub, g12 ¼K12g22Ub,

g21 ¼K21g11Ub, g22 ¼ g22Ub: (3.29)

3.5.2. Coupling power proportionality

If coupling is conservative and dissipative power is proportional to kinetic energy, the power balance Eq. (3.22) can
equally for a two element structure be written as [7]

2Z1o 0

0 2Z2o

" #
Tþ

C �C

�C C

� �
Ê¼

PinU1

PinU2

" #
, (3.30)

where C is equal to any of the off diagonal terms of the matrix C defined in Eq. (3.23). The first term in Eq. (3.30) is the
dissipated power in the elements, so the second term describes the coupling power. Eq. (3.30) has the form of the standard
SEA Eq. (2.3) so one is tempted to believe that coupling power proportionality is proved. An entry of the vector Ê, however,
is not a measure of the vibration energy in the corresponding element as it is, in Eq. (3.24), defined by the Green function
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for the entire structure. Consequently, Eq. (3.30) does not imply that the energy flow is proportional to the difference in
modal energy in two connected elements but only that it is a linear function of the energies.

For weak coupling, equations (3.29) are approximately valid. Thus, neglecting terms of the order l2
max compared to

unity, the entries of q are for weak damping approximately given by

qi �
1

O
Re

Z
O

Z
Vi

�ioGiiUbðx9xÞdxdo
� �

¼
1

O
Re

Z
O

Z
Vi

X
n

�ioðcnUiðxÞÞ
2

miðo2
n�o2ð1þ iZiÞÞ

dxdoÞ � pNi

2riO
,

 
(3.31)

where Ni is the number of eigenfrequencies within the frequency band O. The second approximate equality is
asymptotically exact for resonant vibration and zero damping as in this case all energy in a mode that has resonance
frequency within a band is contained in this band, see Appendix A.

From Eqs. (3.24) and (3.31) it follows that for weak coupling the entries of the vibration potentials Ê are given by

Êi ¼ pTi=qiri ¼ 2Ti=ðNi=OÞ: (3.32)

For resonant vibrations, the strain and kinetic energies are equal and the right-hand side of Eq. (3.32) is the modal energy
(times bandwidth), defined in (2.1). Eqs. (3.30) and (3.32) show that coupling power proportionality is a valid hypothesis
for describing the power balance in a two-element structure, when the elements are weakly coupled and their motion is
determined by resonant modes. Langley demonstrates this in Ref. [7]; the contribution of the present work is the
quantitative criterion by which the assumption of weak coupling may be assessed. Thus, coupling is weak if the maximum
eigenvalue of the non-dimensional coupling matrix K is negligible compared to unity. In Section 4, it is demonstrated that
this criterion may be evaluated on the basis of the standard SEA parameters discussed in Section 2.

3.6. Energy conductivity

The conductivity is expressed in Eqs. (3.23) and (3.30), where its evaluation requires the inversion of the matrix M. For
weak coupling, this can be accomplished by a series expansion [16, see Eq. (9)]. Thus, upon neglecting terms of the order of
l2

max compared to unity, the off diagonal elements of the symmetric matrix C are given by

C ¼ C 1,2½ � ¼
1

p
ðq1=M11ÞM12ðq2=M22Þ (3.33)

where Mij is defined in Eq. (3.25) and qi in Eq. (3.26). Both these are defined by the approximate Green’s function in
Eq. (3.29).

Upon noting that

Re
�io

o2
nUi�o2ð1þ iZiÞ

 !
¼

Zio3

o2
nUi�o2ð1þ iZiÞ

		 		2 , (3.34)

and using the orthogonal relation (3.1), it is found that approximately

qi=Mii ¼ 2riZio: (3.35)

This result is exact if damping is viscous or if the frequency band O is sufficiently narrow so that a factor Zio in the
numerator may be moved outside the integral for qi.

For weak coupling, Green’s function G12 is given by Eqs. (3.27)–(3.29)

G12ðx9yÞ ¼
X

n

X
m

cnU1ðxÞK12½n,m�cmU2ðyÞ=amU2, (3.36)

where the matrix K12 does not depend on x and y. Consequently,

M12 ¼
1

2O

Z
O

Z
V1

Z
V2

o29G12ðx,y,oÞ92
dxdydo¼ V1V2

2O

Z
O

X
n

X
m

o2 K12½n,m�

amU2

				
				
2

do: (3.37)

For general spring coupling, M12 is thus given by

M12 ¼
V1V2

2O

Z
O

X
n

X
m

o2

9anU19
29amU29

2

X
p

kcUpcnU1ðx1cUpÞcmU2ðx2cUpÞj
2

					
#

do:
"

(3.38)

For coupling by one spring only, this simplifies to

M12 ¼
V1V2

2O

Z
O

k2
c ReðY1ðx1cÞÞReðY2ðx2cÞÞ

o4m1m2Z1Z2

do, (3.39)

where the mobilities Yi are defined in (3.15).



S. Finnveden / Journal of Sound and Vibration 330 (2011) 87–109 97
Finally, if as in the derivation of Eq. (3.35) the terms Zio may be moved outside the integrals, the conductivity in Eq.
(3.33) is found. For coupling by one spring it is

C ¼
1

O

Z
O

2

p
k2

c

o2
ReðY1ðx1cÞÞReðY2ðx2cÞÞdo, (3.40)

and for general spring coupling it is

C ¼
1

O

Z
O

2

p
X

n

X
m

Re
�io
anU1

� �
Re
�io
amU2

� �X
p

kcUp

o cnU1ðx1cUpÞcmU2ðx2cUpÞ

					2
#

do:

					
"

(3.41)

The first of these expressions is similar to the one in Eq. (2.17). Eqs. (3.40) and (3.41) are, however, deterministic
expressions that may vary largely because of structural details.

To summarise, weak coupling is defined by that the solution to the coupled equations of motion can be found from a
convergent series of exchanges between uncoupled modes in connected elements. The rate of convergence is given by the
largest eigenvalue to the non-dimensional coupling matrix. Coupling is said to be weak if the magnitude of this eigenvalue
is smaller than unity. This gives a quantitative measure of coupling strength encompassing previously reported qualitative
criteria of coupling strength.

Parts of Langley’s analysis in Refs. [7,16] is reiterated showing that for weak coupling an exact power balance relation is
equal to SEA equations; the original contribution of the present work being the qualitative criterion for the validity of the
weak coupling assumption. This qualitative criterion, using the Bessac et al. results [11], is derived for deterministic
structures. In Section 4, an approximate expression for the criterion is derived for stochastic structures with reverberant
motion, where the criterion is expressed in SEA parameters.

4. Ensemble averages, synthesises and discussion

In Section 3, deterministic calculations establish a criterion validating the SEA formulation for power balance. In this
section, it is required that the coupling strength criterion be fulfilled for all members of the ensemble defined, where its
members are equal to the investigated structure but the elements have stochastic resonance frequencies. Upon this basis,
coupling strength criteria are evaluated and models for predicting ensemble averaged energy are formulated. First, to
expand the understanding of the energy flow between coupled modes, a two-mode structure is investigated in detail.

4.1. Two coupled oscillators

The basis for the modal approach to SEA is Scharton and Lyon’s work demonstrating that the frequency average energy
flow between two oscillators is proportional to the difference in their energy [14]. This is generalised for coupled
substructures described by their uncoupled resonant modes. Thus, in Ref. [1, Section 3.2] it is presumed that the energy
flow is the sum of the energy flows from each of the modes in one substructure to all the modes in the other, with no direct
energy flow between modes in the same substructure.

Consequently, two spring-coupled oscillators (modes in connected substructures) are investigated. A harmonic force of
root mean square amplitude f drives one of the oscillators; the input power and the coupling power are given by

PinU1 ¼ Reð�iou1f �Þ ¼
ðr2

2þ1Þþg
ðr1r2�g�1Þ2þðr1þr2Þ

2

o9f 92

m1D1
, (4.1)

P1,2
coup ¼ Reð�iou1kcðu1�u2Þ

�
Þ ¼

g
ðr1r2�g�1Þ2þðr1þr2Þ

2

o9f 92

m1D1
(4.2)

where

o2
i ¼ ðkiþkcÞ=mi, Di ¼o2Zi, w2 ¼ k2

c =m1m2, (4.3)

ri ¼ ðo2
i �o

2Þ=Di, (4.4)

g¼ w2= D1D2ð Þ, (4.5)

and where ki, mi and Zi are generalised stiffness, mass and loss factor for oscillator i, kc is the generalised coupling stiffness
and ui is the displacement. The factor o9f 92

=m1D1 is the maximum input power to the uncoupled oscillator attained at its
resonance. The non-dimensional parameter ri measures approximately the difference between frequency and natural
frequency in units of 3-dB bandwidth: ri � 2ðoi�oÞ=ðZioÞ. It is interesting that g in Eq. (4.5) is equal to the ‘modal
interaction strength’ defined in Eq. (2.23).

Figs. 1–3 show the normalised coupling power, P1,2
coup=ðo9f 92

=m1D1Þ, for different values of the modal interaction
strength as function of r1 and r2. From Eq. (4.2), the shapes of these curves depend only on g. Thus, each figure displays the
coupling power for an ensemble of coupled oscillators with the same modal interaction strength. A point in the figure gives



Fig. 1. Normalised coupling power, P1:2
coup=ðo9f 92

=m1D1Þ, for g=0.1. The non-dimensional parameter ri measures the separation of uncoupled oscillator

frequency oi and frequency of vibration o in units of oscillator damping band width, see Eq. (4.4).

Fig. 2. Normalised coupling power, P1:2
coup=ðo9f 92

=m1D1Þ, for g=10.
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the coupling power for a particular system vibrating at a specified frequency. If the frequency is varied, a (slightly curved)
line gives the coupling power.

For g=0.1 the coupling power is substantial only when the frequency and the two oscillator frequencies are all equal. In
contrast to this, for g=10 maximum coupling power frequencies are shifted and the area in the r1�r2 plane where the
coupling power is substantial is increased. Thus, for strong coupling there are, for all members of the ensemble, two
frequencies for which the coupling power is large, except for those that have elements with very different uncoupled
frequencies.

Figs. 4–6 show the normalised input power, PinU1=ðo9f 92
=m1D1Þ. For go1, the input power is approximately equal to

that which applies for the uncoupled oscillator and is independent of the other oscillator’s frequency. In contrast, for g41
the input power is influenced by the coupled oscillator and the frequencies for maximum input power are shifted.



Fig. 3. Normalised coupling power, P1:2
coup=ðo9f 92

=m1D1Þ: (a) g=0.02; (b) g=0.1; (c) g=0.5; (d) g=2; (e) g=10; (f) g=50. The contours are drawn for 2%, 5%,

20%, 50% and 98% of the maximum coupling power.

Fig. 4. Normalised input power, Pin1=ðo9f 92
=m1D1Þ, for g=0.1.
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To quantify these observations, the maximum of the coupling power as a function of the oscillator frequencies is
calculated. The frequencies for maximum coupling power are given by

@P1,2
coup

@oi
¼
@P1,2

coup

@ri

@ri

@oi
¼ 0, i¼ 1,2: (4.6)



Fig. 5. Normalised input power, Pin1=ðo9f 92
=m1D1Þ, for g=10.

Fig. 6. Normalised input power, Pin1=ðo9f 92
=m1D1Þ: (a) g=0.02; (b), g=0.1; (c) g=0.5; (d) g=2; (e), g=10; (f) g=50. The contours are drawn for 2%, 5%, 20%,

50% and 98% of the maximum input power.
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This is equally written

r1ðr
2
2þ1Þ�gr2 ¼ 0, r2ðr

2
2þ1Þ�gr1 ¼ 0, (4.7)

These equations have the trivial solution r1=r2=0, i.e., o1=o2=o. For go1 this is the only real solution. For g41, however,
there are two additional solutions given by

r1 ¼ r2 ¼ 7
ffiffiffiffiffiffiffiffiffiffi
g�1

p
, (4.8)
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so that the natural frequencies for maximum energy flow are given by

o1 ¼o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Z1

ffiffiffiffiffiffiffiffiffiffi
g�1

pq
o2 ¼o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Z2

ffiffiffiffiffiffiffiffiffiffi
g�1

pq
8><
>:

9>=
>; and

o1 ¼o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þZ1

ffiffiffiffiffiffiffiffiffiffi
g�1

pq
o2 ¼o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þZ2

ffiffiffiffiffiffiffiffiffiffi
g�1

pq
8><
>:

9>=
>;: (4.9)

Consequently, when the ‘modal interaction strength’, g, is smaller than unity the only maxima to the coupling power is
at o1=o2=o whereas for g41 there are two maxima given by Eq. (4.9), plus a saddle point at o1=o2=o.

The maximum coupling power is given by

Max
P1,2

coup

o9f 92
=m1D1

 !
¼

g=ðgþ1Þ2, go1,

1=4, gZ1,

(
(4.10)

while the input power at the frequencies for maximum coupling power is given by

PinU1

o9f 92
=m1D1

¼
1=ðgþ1Þ, go1,

1=2, gZ1:

(
(4.11)

The maximum input power, regardless of coupling strength, is found at r1=0, r2-7N and is: maxðPinU1Þ ¼o9f 92
=m1D1.

Langley states that coupling is weak if Green’s function for a directly excited substructure is approximately equal to that
for the uncoupled substructure [7]. It is seen that this criterion is fulfilled for two coupled oscillators if the modal
interaction strength g is less than unity.
4.2. Ensemble averages

4.2.1. Two coupled modes

For random structures, the average coupling power is proportional to the probability for substantial coupling power,
which, for two-oscillator structures, increases with the area enclosed by the contours in Fig. 3. (N.B. It is a special frequency
scale.) It is seen in Fig. 3, and is evident from Eq. (4.2), for small modal interactions strength, this area is independent of g.
Thus, the number of ensemble members that contribute largely to the ensemble average coupling power is independent of
g, if g51. This is in stark contrast to behaviour when modal interaction strength is greater than unity. For such structures,
maximum coupling power is independent of g whereas the number of ensemble members that contributes to the average
increases with g. It follows, the modal interaction strength, g, is the non-dimensional parameter that characterises the
ensemble energy flow between two coupled modes.
4.2.2. Multi-modal structures

The vibration potentials Ê are given as linear functions of input powers by the power balance equation (3.22).
Inspection of the derivation Appendix B, reveals that this equation predicts ensemble average values of vibration
potentials, if the matrices q and M are ensemble averaged. That is, if Eqs. (B.4) and (B.6) are ensemble averaged, the power
balance is given by

C/ÊS¼/PS

C¼ ð1=pÞ/qS/MS
�1

/qS (4.12)

where / S denotes ensemble averaging.
A simple example of an ensemble is provided by the set of structures of known properties but their resonance

frequencies are uniformly probable within the frequency band O and the coupling springs have random positions within
the elements. These two conditions aren’t fully independent as the natural frequency of the uncoupled sub structures
depend on the strength of the coupling springs and their precise locations. This dependency is here neglected. This is
asymptotically exact for vanishing coupling strength and for moderate coupling strength it can be motivated by ignorance.

For weak coupling, the expected values of qi and Mii are, from Equations (3.31) and (3.34) and the first integral in the
Appendix A, given by

/qiS¼
p
2

Ni

riO
, /MiiS¼

p
4

Ni

r2
i ZioO

(4.13)

The expected value of M12 is, from Eq. (3.38), given by

/M12S¼
V1V2

2O

Z
O
o2
X

n

X
m

X
p

cnU1ðx1cUpÞ

anU1

2

k2
cUp

cmU2ðx2cUpÞ

amU2

					do
					

*
(4.14)
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Now, if it happens that the coupling springs are located at well separated random locations, they are, on average,
independent paths for the energy transport and Eq. (4.14) simplifies to

/M12S¼
V1V2

2O

Z
O
o2
X

n

X
m

X
p

cnU1ðx1cUpÞ

anU1
k2

cUp

cmU2ðx2cUpÞ

amU2

				
				
2
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*

¼
1

2O

Z
O

X
p

k2
cUp

o2

/ReðY1ðx1cUpÞÞS/ReðY2ðx2cUpÞÞS
r1r2oZ1oZ2

do

�
1

2

X
p

k2
cUp

o2

YcU1YcU2

r1r2oZ1oZ2

(4.15)

where Eqs. (3.15) and (3.34) were used. In the last approximate equality the ensemble averaged point mobility at the
connection points is equated to the characteristic mobility, evaluated at the band’s nominal frequency.

In cases when the springs are not independent paths for the energy transmission, ensemble averaging the natural
frequencies of the two elements and, as in Appendix A, neglecting the small difference between the natural frequencies in
the considered band and the nominal frequency, yields

M12


 �
¼
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O

X
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X
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p2
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 ! X
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+
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2* +

(4.16)

where the remaining ensemble averaging considers the spring locations only and n0 and m0 denotes that the summations
consider the modes within the band only.

Upon this basis, the conductivity that relates the ensemble average energy flow to the ensemble average modal energies
is, when Eq. (4.15) applies, given by
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¼

2
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X

p

k2
cUp

o2
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This value of C is equal to the standard SEA value, for weak dynamic coupling, see Section 2. If instead, Eq. (4.16) applies,
the conductivity is given by

C ¼
pN1N2

2O2

� �
1

N1N2

X
nu

X
mu

X
p

cnU1ðx1cUpÞ
kcUp

o ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2
p cmU2ðx2cUpÞ

					
					
2* +
: (4.18)

In conclusion, the Langley model for power balance determines ensemble average vibration potentials, if the matrices
q and M are ensemble averaged. For resonant vibration and weak coupling, defined where the largest coupling eigenvalue
has a magnitude of less than unity, the vibration potentials equals the modal energy times analysis bandwidth. Also, for
weak coupling, and if the elements have independent stochastic properties, the ensemble averages are calculated
independently for the connected elements. Upon this basis, the standard SEA model discussed in Section 2 is recovered. In
particular, the ‘‘standard SEA’’ model for two coupled oscillators with random properties given by Eq. (2.24) is verified by
either of Eqs. (4.17) and (4.18).
4.3. Modal interaction strength and coupling eigenvalues

Coupling is weak if the coupling eigenvalues magnitudes are less than unity. For weak coupling, defined in this manner,
the series expansion in Eq. (3.9) converges and Green’s function of the coupled structure as well as the ‘‘modal behaviour’’
is approximated by those applying for uncoupled motion. In what follows, relations between coupling eigenvalues, SEA
parameters and modal interaction strength are investigated.
4.3.1. Two oscillators

The coupling eigenvalue for a two-mode structure are, from Eq. (3.16), given by

9l2
max9¼

k2
c

9a1a29
¼

g
9ðr1�iÞðr2�iÞ9

rg, (4.19)

where the modal receptance, ai, is defined in Eq. (3.4) and ri and the modal interaction strength g are defined in Eqs. (4.4)
and (4.5). Coupling is weak if the magnitude of the coupling eigenvalue is less than unity. It is seen in Eq. (4.19) that this
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criterion is fulfilled for all frequencies and for all members of the ensemble of ‘similar’ oscillators, if the modal interaction
strength, g, is less than unity.

The modal interaction strength is thus an ensemble property, which does not depend on the precise properties of the
oscillators. This is in contrast to Smith’s coupling strength criterion based on the coupling loss factor derived by Scharton
and Lyon [14], see below, which is very sensitive to the difference between the oscillator frequencies.
4.3.2. The Smith criterion for weak coupling and the modal interaction strength

Smith states that coupling is weak provided that [5]

Z1,2
coup=Z151 and Z2,1

coup=Z251, (4.20)

where Zij
coup are the coupling loss factors. The Smith criterion is frequently used for assessing the validity of assumptions in

SEA, see, e.g., Ref. [1]. This application of the criterion is questioned in Refs. [9,10]. It is doubtless, however, that it
determines the character of the solutions to the SEA equation [5].

The two criteria (4.20) are equally written as one single criterion:

Z1,2
coup=Z1þZ

2,1
coup=Z251: (4.21)

For two coupled oscillators, Scharton and Lyon derived the fundamental equation for the modal approach to SEA, where
the frequency averages of coupling power and oscillator energies are related [14]

P1,2
coup ¼ bðE1�E2Þ: (4.22)

For two spring-coupled oscillators, b is given by Ref. [1, Eq. (3.1.15)]
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where ci is the specific viscous damping coefficient: ci=Zio. Note, as is common practise in SEA, Eq. (4.22) is generalised to
apply for a frequency band, with mid-frequency o, which contains both oscillator frequencies.

Now, it is required that the Smith criterion (4.21) be valid for all members of an ensemble of similar two-oscillator
structures, having random oscillator frequencies. Thus, it must also be fulfilled when b has its maximum value, which
(upon neglecting terms of the order of Z2

i compared to unity) is found for o2=o1. This value of o2 is used in Eq. (4.23), and,
upon neglecting the presumed small difference between o and o1, we have
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� �
¼ g: (4.24)

Consequently, requiring that the Smith criterion be fulfilled for all members of an ensemble of coupled oscillators,
having random frequencies within the considered frequency band, is equivalent to requiring that the modal interaction
strength, g, be much less than unity.
4.3.3. General spring coupled structures

For elements coupled by randomly positioned springs, the maximum coupling eigenvalue is given by

l2
max
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Again, it is required that the coupling eigenvalue be less than unity for all frequencies and for all members of the ensemble
of ‘similar’ structures. Thus, the criterion must apply also when there is resonance in both elements. Applying, for
reverberant motion (Mo1), Skudrzyk’s relation between the characteristic mobility and the maximum mobility in
Eq. (2.10), the criterion is seen to be fulfilled provided that
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where the conductivity C is given in Eq. (2.19), and equally in Eq. (4.17) and the modal interaction strength g is defined by
Eq. (2.15). The criterion (4.25) is equal to that which governs the validity of standard SEA for prediction of ensemble
average energies in one-dimensional waveguides [8–10].

The coupling eigenvalue for general spring coupling is given by Eq. (3.18). An estimate of the largest coupling
eigenvalue across an ensemble of elements is derived assuming that: (i) the responses of both connected elements are
resonant; (ii) the maximum is defined when there is resonance in both connected elements; (iii) these resonant modes
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have typical mode shapes. Upon this basis, an estimate of the largest coupling eigenvalue is given by
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where, in this case, C is given by Eq. (4.18).
From Eqs. (4.25) and (4.26) follows the important result that the validity of the weak coupling assumption can be

approximately assessed by the modal interaction strength. It is given by comparatively simple SEA parameters, derived for
random structures and upon the assumption of weak coupling. Thus, the validity of such an SEA model may be assessed by
its input data.

5. Remarks

The reviews in Sections 1 and 2 concern mostly the development up until 2000. Additionally, the last decade has shown
some substantial development in SEA; particularly on the interaction of SEA and FEA, the expected variance in the response
of the members of an ensemble and, also, on the understanding of the method. Some of this progress is discussed below.
First, two complications, tacitly omitted in the preceding analysis are discussed.

5.1. Moderately weak coupling

In the present work, the deterministic analysis is simplified upon the assumption that the coupling eigenvalues are
much less than unity. Upon this basis, SEA results in Section 3 are derived without using any statistical assumptions or
without accounting for the smoothing effect of frequency averaging. Then, in Section 4, simple ensembles are considered
showing the similarity to standard SEA formulations, demonstrating that the maximum coupling eigenvalue for an
ensemble is equal to the coupling strength measure g, here denoted ‘modal interaction strength’. This parameter governs
the application of SEA for prediction of ensemble averaged energies in one-dimensional waveguides [8–10]. Refs. [9,10],
however, demonstrate that standard SEA procedures estimate ensemble averages accurately if only the modal interaction
strength is less than unity. This indicates that the present results may be valid not only for very weak coupling, g51, but
also for moderately weak coupling, gr1.

In the present work, we are content to derive results for very weak coupling and to demonstrate a criterion by which
the validity of this assumption can be assessed. Quantitative estimates of the errors resulting for moderate weak or strong
coupling, or the quantitative implications of stochastic assumptions in SEA, are not dealt with.

5.2. Comment on other coupling conditions

Iteration schemes similar to Eq. (3.9) can be formulated also for coupling mechanisms other than spring coupling. Thus,
coupling may be weak if there is a large difference in wave impedance between the connected elements. Maxit and
Guyader present a technique for formulating the coupled equations of motion for such structures, which can be used with
the present methods [28,29]. Coupling may also be weak if both elements’ wave impedances are very different to the
impedance of the coupling mechanism, for instance if there is a blocking mass or an elastic interlayer. (In the present work
coupling may be weak if the spring mobility is much larger than the elements’ input mobilities.)

When applying the iterative method, note that the rapid convergence of Eq. (3.9) is only a sufficient condition for weak
coupling—not a necessary condition. For instance, consider two large thin flexurally vibrating plates that are connected via
a rigid, very heavy, mass. These elements are, from an energetic point-of-view, weakly coupled. However, if the free plate
modes are used in Eq. (3.6) to express the solution to the coupled equations of motion, for each frequency a large number
of modes are required to fulfil the condition of almost blocked motion at the heavy mass. Thus, the series expansion (3.9)
converges slowly (if at all) although the elements are weakly coupled. If, instead, an equation similar to Eq. (3.5) is
formulated with fixed-base modes, having blocked motion at the mass, convergence should be rapid.

The implication is that when calculating SEA coupling factors using a weak coupling assumption, as in Eq. (3.33) or in
Ref. [16, Eq. (43)], care must be taken so that the uncoupled modes obey appropriate boundary conditions, since coupling
eigenvalues, as well as conductivities calculated by a first order approximation, depend not only on the investigated
structure but also on the choice of boundary conditions for the uncoupled modes.
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For structures studied in academic research, the choice of boundary conditions is usually obvious but it is not always so
for engineering structures. Therefore, it is vital that future research focuses upon the criteria for subdividing structures into
SEA elements and for choosing uncoupled boundary conditions for these elements. To this end, the recent works by Maxit,
Totaro and Guyader are interesting [28–30].

5.3. SEA, FEA and one-way methods

Sometimes, it is possible to solve the equations of motion for the entire structure of interest. Shorter and Mace calculate
the global modes of the structure and formulate the frequency band averaged energy conservation for substructures on
this basis [31–33]. The formulation is similar to the power injection method (PIM) used by Fredö [34] but more efficient. It
expresses the energy conservation with the subsystem’s energies as dependent variable and yields an un-symmetric
system matrix and is an ‘SEA-like model’. Ref. [35] contains a valuable discussion on the various SEA models that can be
devised by deterministic FE calculations. Here, SEA-like signifies that the model describes the law of energy conservation,
as SEA does, but it applies for an individual member of the ensemble considered by SEA [34]. Green’s function may be
calculated with the FEM upon which Langley’s formalism, as presented in this work, yields an SEA-like model where the
system matrix is symmetric but the dependent energy variable is defined by the entire structures properties. Provided that
the subsystem’s space and frequency averaged point mobility can be approximated by Eq. (2.9) (Langley’s definition of
weak coupling [7] and [33, Eq. (30)]), both methods yield a symmetric matrix and local energy variables defined by the
subsystem’s properties. Carbonelli compares the two formulations based on measurements and FE calculation of the
response of a three plate structure and notes some differences: in this case, Langley’s method was somewhat more efficient
and robust [36].

Often it is not practical, or interesting, to solve the fully coupled equations of motion for the entire structure while the
modes proper to the un-coupled subsystems are attainable. The present work (as well as [19]) is concerned with SEA
models based on such local modes. It is found that, provided the modal interaction strength g is small, the coupling appears
on a mode-to-mode basis, as in Fig. 3.4 in Ref. [1]. Moreover, the conductivity (or coupling loss factors) are calculated by a
one-way procedures, where the first element’s energy is defined and the action of this element is calculated without
concern of the reaction. For such one-way calculations, the ensemble averages of coupling power and energies are
calculated independently for the two elements, as in Eq. (4.15).

Maxit and Guyader [28,29] and Mace and Ji [37] also consider systems described by local modes. They postulate that the
coupling power is given on a mode-to-mode basis while considering fully coupled mode pairs. Maxit and Guyader develop
a generalised gyroscopic coupling which applies to a great variety of coupling mechanisms. As in SEA they calculate
frequency band averages of the response but the system properties are deterministic and they attribute the individual
modal amplitudes, i.e., they do not assume modal equipartition and this appears to improve results in low mode count
frequency regimes and, probably, also whenever the excitation or coupling discriminates some of the modes.

Mace and Ji consider spring coupled oscillators (local modes) that have random properties defined by rectangular
distributed natural uncoupled frequencies, as in the present work. The results are identical to those in Eq. (2.24) except for
two factors that appear for strong coupling; thus the coupling loss factor Z12 given by Eq. (2.24) is

oZðcÞ12 ¼
p
2

w2

o2O
, (4.27)

while Eq. (2.15) of Ref. [37] is
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g is defined equally in this work and in Refs. [19,37]. The denominator in the first of Eqs. (4.28) is in the later analysis, see
Ref. [37, Eq. (3.11)], substituted with a factor of unity, without any explanation. Mace and Ji state that previous works have
calculated the coupling parameters that relates ensemble averaged energies and input powers by ensemble averaging the
coupling loss factor, which is not correct. However, correct ensemble averaging is made in Ref. [19], as in this work. Also,
the ensemble averaged coupling power that results from Eqs. (2.9), (2.14) and (2.15) of Ref. [37] is identical to the one in
Ref. [1, Eq. (3.1.20)], indicating that the same analysis is made.

The current work shows that, for spring coupled structures, a sufficient condition for the mode-to-mode coupling and
one-way calculations of coupling parameters is that the modal interaction strength g is small. It might be, though it is not
proven, that this is also a necessary condition. If so, the correction factor

ffiffiffiffiffiffiffiffiffiffi
1þg

p
in Eq. (4.28) is inconsistent for multi modal

structures, meaning that it only matters when the mode-to-mode analysis fails. This surmise is supported by the results in
Figs. 4 and 5 of [37] and more significantly in Ref. [28, Section IV.2] revealing that if incorrect boundary conditions are
chosen for the uncoupled modes, the mode-to-mode approach provides incorrect results.

As mentioned above, some of the most important later developments in SEA are the variance predictions by
Langley, Cotoni and Brown, e.g., Ref. [38] and the Shorter and Langley reciprocity relation [39] that is the basis for the new
hybrid method [40,41]. Here it is simply noted that the analyses leading up to these important results are partly
based on one-way calculations and weak coupling assumptions. It is, therefore, suggested that future practitioners of the
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methods check the magnitude of the modal interaction strength to gain further insight to the range of validity of the
methods.

Finally it is noted that Le Bot and Cotoni [42] have braved to list the criteria for the validity of SEA; these are (i) large
mode count; (ii) small energy decay as a wave travel across an element; (iii) large modal overlap factors; (iv) weak
coupling as measured by Smith’s criterion (coupling loss factor/damping loss factor=conductivity/modal overlap factor).
Now, if the modal overlap factor is large and the coupling losses are smaller than the damping losses, the modal interaction
strength g is small. Thus the findings in this work agree with commonly used criteria.
6. Conclusions

Coupling strength is a central concept in SEA. It is only for weak coupling that the coupling power hypothesis can be
approximately valid for multi-element structures, since it is not valid for three strongly coupled oscillators [15]. It follows
that it is only for weak coupling that the parameters in the SEA equations for power balance may be evaluated for large
structures while considering only two coupled elements at a time. Despite the significance of the weak coupling
assumption, there are no universally agreed criteria by which this assumption may be assessed; though, several definitions
are found in the literature, as discussed in the introduction. The present work investigates the response of two general
spring-coupled elements in an attempt to develop a unifying approach to the weak coupling criterion for applying
Statistical Energy Analysis (SEA).

The coupled equations of motion are expressed in the bases given by the uncoupled elements’ eigenmodes. An iterative
solution to these equations is expressed as a succession of exchanges between elements, where the uncoupled motion
provides the start approximation. This procedure is similar to the one employed by Newland [4,25]. Bessac, Gagliardini and
Guyader demonstrate that the process converges if the maximum ‘coupling eigenvalue’ (the largest magnitude of the
eigenvalues to the non-dimensional coupling matrix) is less than unity, in which case coupling is said to be weak [11].

Keane and Price define weak coupling where the ‘modal behaviour’ of the coupled structure approximates that of the
uncoupled [6]. The modal amplitudes provide one description of modal behaviour. Consequently, the Keane and Price
criterion for weak coupling, defined in this manner, is fulfilled if the coupling eigenvalue is small.

Langley formulates equations for the power balance in built-up structures based only upon the assumptions of uniform density
within the elements, linear motion and rain on the roof excitation [7]. The formulation is, for conservative coupling, approximately
equal to the SEA formulation, if the element motion is resonant and if Green’s function for a directly excited element is
approximately equal to that for the uncoupled element; in which case coupling is said to be weak [7]. Green’s function is
evaluated by the iterative process applied for point excitation, becoming immediately clear that for small coupling eigenvalues it
is asymptotically equal to that for the uncoupled element. Concluding, the coupling power hypothesis is valid for stochastically
excited, albeit deterministic, structures if the coupling eigenvalue is much less than unity.

SEA considers the average response of an ensemble of similar structures. Here, investigations are made considering the
ensemble defined when its members are equal to the investigated structure but the elements have stochastic frequencies.

Two oscillators (modes in connected structures) are considered first. The coupling power is written in uni-dimensional
form, where the non-dimensional ‘modal interaction strength’ g characterises the coupling. A value of unity of this
parameter marks a bifurcation of the coupling power characteristics across the ensemble. For go1 coupling power is
substantial, only when the frequency of vibration and the two uncoupled resonance frequencies are all equal and the
maximum coupling power across the ensemble increases with increasing modal interaction strength. For g41, however,
the maximum coupling power is independent of g while the number of ensemble members that contribute to the ensemble
averaged coupling power increases with increasing g.

Ensemble averages of multi-modal structures are then considered. For small coupling eigenvalues, the SEA model
describing the ensemble averaged energies is evaluated independently for the connected elements, if these have
independent statistical properties. For a simple stochastic model where the uncoupled frequencies are assumed uniformly
probable within a frequency band, the standard SEA conductivity is recovered. Also, so is the ‘‘standard SEA’’ formulation
for two spring-coupled oscillators, which is presented in Ref. [19], repeated in Eq. (2.24) and demonstrated in Section 4.

The standard modal approach in SEA is based upon the assumption that the energy flow between sets of modes is given
on a mode-to-mode basis [1, Fig. 3.4]. This is a valid assumption, if the coupling eigenvalue is less than unity; i.e., it is a
valid assumption, for all members across an ensemble, if the modal interaction is small.

It is believed that SEA applies if: (I) the response in each element is governed by its resonances, i.e., by its local modes. (II)
Coupling Power Proportionality holds. In this study, it is shown that, for spring coupled two-element structures;
the second criterion is a consequence of the first. It is speculated: if the first assumption holds, the response of each element
is given by its local solutions to the equations of motion (unless the forcing or coupling applies restraints—as, e.g., in periodic
structures). The local solutions act independently and interact weakly, otherwise the first assumption would not hold. If, in
addition, local solutions are statistically defined, the interaction is of a random nature and the situation resembles the one treated
in statistical mechanics. Hence, the heat conduction analogy for SEA, i.e., coupling power proportionality.

To sum up, the coupling eigenvalues determine whether response in coupled structures is local or global. For small
coupling eigenvalues, the coupling strength criteria set up by Newland [4,25], Bessac, Gagliardini and Guyader [11], Keane
and Price [5] and Langley [7] are all fulfilled. Upon this basis, the SEA coupling power hypothesis is validated for general,
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deterministic, spring coupled structures that are stochastically excited. A scheme for evaluating the SEA parameters based
on modal data found, e.g., by the FEM is presented.

The modal interaction strength is the largest coupling eigenvalue found across an ensemble of structures that are
similar to the investigated structure but they have random natural frequencies. The modal interaction strength
characterises the ensemble averaged energy flow in uni-dimensional waveguides [8–10]. It characterises the energy flow
between two coupled oscillators. Requiring the modal interaction strength to be small for two coupled oscillators is equal
to requiring the Smith criterion [5] be fulfilled for all members of the ensemble.

The modal interaction strength is an ensemble property describing the character of mode coupling not the actual
strength of coupling between particular modes which is, as shown by Scharton and Lyon [14], very sensitive to the
difference in uncoupled frequencies. In contrast, the modal interaction strength depends on gross descriptors of the
structure: the modal overlaps of the elements and the SEA conductivity found by considering the coupling of elements
with random properties or, equally, semi-infinite elements. Thus, an SEA model can be assessed by its input data.

Finally, the significance of the modal interactions strength as an indicator of coupling strength is enhanced by that it can
be measured: for spring coupled structures, Cs, defined by Fahy and James [12], is effectively an indicator for the modal
interaction strength g [19].
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Appendix A. Two integrals

Much of the magic in SEA appears from the approximate evaluation of two integrals. These integrals appear frequently
in the present work and a discussion of the approximations involved seems motivated. The first integral, I1, is used for
calculations of the input power to a single oscillator (a mode in a substructure) excited by a white force. I1 is given by

I1¼
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where o1 is the oscillator frequency, Z is the loss factor and O is the frequency band. The frequency dependence of
damping is chosen in the most convenient form, being a standard trick in SEA. It is allowed since it is very rare to have
more detailed information about losses than an average loss factor in frequency bands.

The integral above is evaluated upon two further assumptions, both valid for weak damping: Z51. First, it is assumed
that the frequency band is wide enough to contain most of the power input. This is valid, with a relative error that is less
than 10%, if the lower and upper limits of the frequency band O are at least three 3-dB bandwidths below and above the
oscillator frequency, o1 [20]. Second, it is assumed that the oscillator bandwidth is so small that the value of the integral
will not be altered by the following approximations:

o2
1�o

2 ¼ ðo1þoÞðo1�oÞ � 2o1ðo1�oÞ � 2oðo1�oÞ: (A.2)

Upon this basis, the integral, I1, is given by
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where the first approximate equality is given by the ‘narrowness’ of the oscillator resonance and the last one by the
‘wideness’ of the frequency band O.

The second integral, I2, is used for calculations of oscillator energy. I2 is, using the approximations above, given by
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This result could, of course, have been reached from the value of I1 and upon requiring energy conservation for the
oscillator. It is notable that upon the approximation (A.2), the integrals I1 and I2 are equally evaluated if the frequency o is
given while the natural frequency o1 is a rectangle distributed random variable.



S. Finnveden / Journal of Sound and Vibration 330 (2011) 87–109108
Appendix B. Power balance

For completeness, Langley’s power balance equations are derived in this Appendix. Linear theory and harmonic motion
are assumed; without further limitation, the response of the coupled system can be expressed in the form [7]

wiðx,oÞ ¼
X

j

Z
Vj

Gijðx,y,oÞFj y,oð Þdy, (B.1)

where wi is the displacement in subsystem i, Fj is the applied force in subsystem j, Vj is the ‘volume’ of subsystem j and the
Green function Gijðx,y,oÞ represents the response at location x on subsystem i to a harmonic point load situated at location
y on subsystem j. The frequency averaged kinetic energy in element i is given by
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where r is the ‘density’ of subsystem i, O is the frequency band and F* is the complex conjugate of F.

Assuming rain on the roof excitation, the applied forces are statistically independent and delta correlated in space. Thus
the cross-spectrum, Sjk, of Fj and Fk has the form

Sjkðy,z,oÞ ¼ djkdðy�zÞaj (B.3)

This also incorporates the assumption that the cross-spectrum is independent of o over the frequency band O. Upon these
assumptions, the statistical expectations of the frequency averaged kinetic energies in the subsystems can be calculated
[7]. The result is conveniently expressed in matrix form,

T¼Ma, (B.4)

where the vector T contains the frequency averaged kinetic energies of the subsystem and the entries of M are given by

Mij ¼
1

2O

Z
O

Z
Vj

Z
Vi

riðxÞo
29Gijðx,y,oÞ92

dxdydo: (B.5)

By similar calculations, the frequency averages of the input powers are given by

P¼ qa, (B.6)

where the diagonal matrix q has the entries

qi ¼
1

O
Re

Z
O

Z
Vi

�ioGii x,x,oð Þdxdo
� �

: (3.26)

From Eqs. (B.4) and (B.6) follows the relation between frequency averaged kinetic energies and input powers

T¼Mq�1P: (B.7)

To further simplify this, Langley considers subsystems that have constant density, however, simplification may be found
for more general systems [27]. Thus, an average, or effective, density is defined for each element and for each excitation.
These effective densities are collected in the matrix R with entries

Rij ¼
1

2O

Z
O

Z
Vj

Z
Vi

rio
29Gijðx,y,oÞ92

dxdydo=Mij, (B.8)

where

Mij ¼
1

2O

Z
O

Z
Vj

Z
Vi

o29Gijðx,y,oÞ92
dxdydo: (3.25)

Now it is assumed that the effective density is independent of which substructure is excited. This is valid when either the
density is uniform within each subsystem or the form of the vibrations, the relative amplitudes of the modes or of the
vibration waves, is independent of excitation. The first assumption is Langley’s; the latter is in accordance with the SEA
assumptions of equipartition of modal energies or of diffuse wave fields within each subsystem. Consequently, in
mathematical terms, it is assumed that

Rij ¼ Rii 8j: (B.9)

Finally, to arrive at a symmetric equation similar to the one used in SEA, variables Ê are introduced

Ê¼ pr�1q�1T, (3.24)
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where the entries of the positive and diagonal matrix r are Rii, Eq. (B.8). Upon this basis, Eq. (B.7) can be inverted to yield

CÊ¼ P (3.22)

where the non-dimensional symmetric matrix C is given by

C¼ ðpq�1Mq�1Þ�1
¼ ð1=pÞqM

�1
q: (3.23)
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